UK Parliament / Open data

Education: Science and Mathematics

asked Her Majesty’s Government how they propose to develop the teaching of science and mathematics in the United Kingdom so that future generations may be equipped to compete effectively in the emerging global marketplace. The noble Lord said: My Lords, there is a group of individuals whose accomplishments are brought instantly to mind by the mere mention of their names—Isaac Newton, James Watt, Isambard Kingdom Brunel, Alexander Fleming, Charles Darwin. I could go on and on. These are just some of the great physicists, engineers, biologists, chemists and mathematicians who have enriched and changed for ever the world we live in. Just as it has in the fields of the arts and business, our small island has for centuries punched above its weight and produced many men and women who have led the world in ideas and technological advance. Today that tradition continues. Stephen Hawking has changed our understanding of the universe; Tim Berners-Lee, the inventor of the internet, has changed the way in which mankind will for ever learn and communicate; and my noble friend Lady Greenfield is leading the world in research into Parkinson’s and Alzheimer’s diseases. These are just some of the great leaders of our scientific community. As I glance around the Chamber, I am humbled to be joined by some of our great educational leaders. My noble friend Lord Dearing is chancellor of Nottingham University and a champion of lifelong learning; my noble friend Lady Finlay is president of the Royal Society of Medicine; my noble friend Lord Rees, who is due to be with us, is Astronomer Royal, Master of Trinity College, Cambridge, and president of the Royal Society; the noble Baroness, Lady Warwick, is chief executive of Universities UK; and the noble Lord, Lord Taverne, has served on the House of Lords Science and Technology Committee for a number of years. I am also grateful to those on the Front Benches—the noble Baronesses, Lady Morris of Bolton and Lady Sharp of Guildford, and the noble Lord, Lord Adonis, whose response to the debate I greatly look forward to hearing. Like me, the Minister will have read the report Science Teaching in Schools, published a year ago by the Science and Technology Committee. Chaired by my noble friend Lord Broers—the former vice-chancellor of my alma mater, Cambridge—the committee observed that the number of young people opting for science subjects at the age of 16 has remained more or less flat and has in some cases declined over the past decade. Startling evidence highlighted the fact that around a quarter of state school pupils aged 11 to 16 had no access to a qualified physics teacher, and 12 per cent had no access to a qualified chemistry teacher. Compounding this failure in human resources were shortages of physical resources. The report concluded that the Government had failed to deliver £200 million for school science laboratories promised before the 2005 election. Not surprisingly, half of all A grades achieved in physics were from candidates from independent schools—a sector that educates only 8 per cent of our young children but enjoys far superior facilities in the teaching of science. Moreover, in the light of the publication just yesterday of the annual report of Her Majesty’s Chief Inspector of Schools, which has ranked almost half of our schools as either satisfactory or, worse, inadequate, is it any wonder that just 200 of our independent schools account for 48 per cent of Oxbridge admissions, with 3,500 additional schools accounting for the balance of 52 per cent? Even more troubling are the findings in Ofsted’s report that 200,000 of our teenagers remain outside education, training or employment. Like many in this House, I am eager to hear from the Minister what progress he believes has, and will be, made in the future. As many noble Lords know, I was born and grew up in India, and I take great pride in India’s emergence on to the world stage as a major economic power. India today has a middle class of 300 million people—a consuming class that has quadrupled in size over the past 25 years. To Indians, maths, science and engineering are priority subjects; they are tickets to go anywhere or do anything. In the past five years alone, the number of engineers graduating from India has more than doubled, while the figures for those studying the subject here in Britain have stagnated for some time. On the other hand, more than 300 million people in India are living on less than a dollar a day in abject poverty. Even the poorest Indians realise that education is the passport to a better life but, sadly, for the vast majority of them, despite the Indian Government pledging to vastly increase education spending to 6 per cent of GDP, the prospects of a good education for poor Indians remains but a distant dream. How, then, must these people view Britain? We are a hugely wealthy nation. We enjoy free healthcare, our welfare state cares for and houses millions of our citizens, and everyone has access to free schooling and subsidised universities. This country has opportunities for learning of which most Indians can only dream. Yet, as the noble Lord, Lord Leitch, recorded in his excellent report on skills published a year ago, there is a shocking skills deficit in Britain today. The report revealed that 17 million adults in the UK have difficulty with numbers and that more than one in six young people leave school unable to read, write or add up properly. The Leitch report also said: ““The global economy is changing rapidly, with emerging economies such as India and China growing dramatically, altering UK competitiveness ... There is a direct correlation between skills, productivity and employment ... As a result of low skills, the UK risks increasing inequality, deprivation and child poverty, and risks a generation cut off permanently from labour market opportunity””. That threat is very real, but the qualities needed to meet the challenge of the modern economy are very much here in the UK. Let us take, for example, our high-tech manufacturing base. The UK exported more cars last year than at any time in our nation’s history, and yet people say British manufacturing is dead. Furthermore, all the technology of Formula 1 racing—a global industry dependent on cutting-edge science—is developed right here in the UK. As my noble friend Lord Jones of Birmingham likes to remind people with his characteristic gusto, two-thirds of an Airbus with Rolls-Royce engines, although branded as European, is produced right here in Britain. Feeding these industries are our universities—another prized asset of our nation, especially when one considers the resources at their disposal. For example, Cambridge’s endowment is less than a third of that of universities such as Harvard in the United States, yet Cambridge has been ranked number one in the world for science and number two in world out of all universities. I encourage all noble Lords to read the Universities UK report, Eureka UK, on the 100 great British innovations to have come out of British universities over the past 50 years. It is an inspirational document and shows just what world-changing innovations have been created at many of our universities here in Britain. So we have excellence in our universities and industries but we are failing in our schools. The Government should be commended for making our country’s fabulous museums, such as the Natural History Museum and Science Museum, free, but we need to institute many more such initiatives aimed at capturing the imagination of our children during their early years. Industry has its part to play in inspiring our children. I have an example of that. I gave a speech at a school, as a result of which I started getting applications at my company for internships. In a year I have had several O-level and A-level students as interns, experiencing the sharp end of entrepreneurship in a company, and the word is spreading. How much more we can do. I mentioned Formula 1. How many young people realise and equate the glamour of that sport with the graft of learning maths or physics? Yet, if opportunities to experience careers that result from an education in these subjects were more heavily promoted, perhaps the stagnation we have seen in the number of young people studying these subjects would change. It is not only a matter of teaching science but how we teach the subject. In a strong case put forward by the Institute for the Future of the Mind, it was argued that education must provide our future workforce with not only the skills and abilities to work at the cutting edge of innovation, but to be flexible to change. To be educated in maths in my opinion is to have the strongest possible foundation in life in whatever career one chooses. Central to the debate on promoting science and maths in our schools is the Government’s ability to find, retain and reward inspirational teachers. There is a shortage of qualified teachers of science and maths, and those currently teaching are, sadly, poorly paid. I ask the Minister to do everything in his power to offer greater incentives to people considering a career teaching science or maths, and to remove any barriers that currently stop those who wish to take up the vocation of teaching from doing so. Britain has a proud tradition of being at the forefront of creativity and leading in innovation, with the rest of the world often following. A definition of serendipity is seeing what everyone else sees but thinking what no one else has thought. A friend of mine recently told me his definition of luck. He said that luck is when determination meets opportunity. Time after time in our history, Britain has thought what no one else has thought. However, to stay ahead in today’s increasingly competitive integrated global economy, Britain has to be determined. The opportunities exist, but unless we tackle maths and science we will not be equipped to grasp them. We must act now before it is too late.
Type
Proceeding contribution
Reference
695 c820-4 
Session
2006-07
Chamber / Committee
House of Lords chamber
Back to top